The effects of interdisciplinary teaching between mathematics and physical education: A Systematic Review
Keywords:
Physical education, Implementation of physical education at school, Mathematics, Body-based learning, Interdisciplinary educationAbstract
Physical activity provides numerous benefits to physical and mental health, even affecting learning. Despite this, one of the main modern problems is represented by sedentariness. Children and adolescents spend most of their time at school. Therefore, a valid teaching methodology to benefit from the positive effects of physical activity and reduce sedentary moments could be interdisciplinary learning, which integrates physical education into various curricular subjects. Specifically, this paper proposes a systematic literature review of some protocols (n = 11) to investigate whether an elementary school’s integrated physical education and mathematics curriculum can improve learning in the logic-cognitive domain. From all the studies reviewed, the strong importance of interdisciplinary teaching, linking mathematics to physical education, was confirmed to reduce sedentary moments and enable a better attitude toward this discipline, breaking down the many stereotypes that often paint it as a complex and abstract subject.
References
Álvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sánchez-López, M., Garrido-Miguel, M., & Martínez-Vizcaíno, V. (2017). Academic Achievement and Physical Activity: A Meta-analysis. Pediatrics, 140(6), e20171498. https://doi.org/10.1542/peds.2017-1498
Bala, G., Adamović, T., Madić, D., & Popović, B. (2015). Effects of Acute Physical Exercise on Mathematical Computation Depending on the Parts of the Training in Young Children. Collegium Antropologicum, 39 Suppl 1, 29–34.
Beck, M. M., Lind, R. R., Geertsen, S. S., Ritz, C., Lundbye-Jensen, J., & Wienecke, J. (2016). Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00645
Benefits of Physical Activity. (2023, August 1). [Institutional website]. Centers for Disease Control and Prevention. https://www.cdc.gov/physicalactivity/basics/pa-health/index.htm
Boz, B., & Kiremitci, O. (2020). Effect of maths-integrated PE games on cognitive ability. South African Journal for Research in Sport, Physical Education and Recreation, 42(2), 1–14. https://www.ajol.info/index.php/sajrs/article/view/200104
Capio, C. M., Cheung, S. K., Fung, S. S. W., & Hu, X. (2024). Integrating Fundamental Movement Skills and Mathematics in Early Childhood: A Pilot Study. Children, 11(4), 457. https://doi.org/10.3390/children11040457
Cecchini, J. A., & Carriedo, A. (2020). Effects of an Interdisciplinary Approach Integrating Mathematics and Physical Education on Mathematical Learning and Physical Activity Levels. Journal of Teaching in Physical Education, 39(1), 121–125. https://doi.org/10.1123/jtpe.2018-0274
Chmura, J., Nazar, K., & Kaciuba-Uścilko, H. (1994). Choice Reaction Time During Graded Exercise in Relation to Blood Lactate and Plasma Catecholamine Thresholds. International Journal of Sports Medicine, 15(04), 172–176. https://doi.org/10.1055/s-2007-1021042
Collins, A., & Koechlin, E. (2012). Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making. PLoS Biology, 10(3), e1001293. https://doi.org/10.1371/journal.pbio.1001293
Cooper, C. J. (1973). Anatomical and Physiological Mechanisms of Arousal, with Special Reference to the Effects of Exercise. Ergonomics, 16(5), 601–609. https://doi.org/10.1080/00140137308924551
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Medicine & Science in Sports & Exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901
Fakri, N. F. N., & Hashim, H. A. (2020). The effects of integrating physical activity into mathematic lessons on mathematic test performance, body mass index and short term memory among 10 year old children. Journal of Physical Education and Sport, 20(1), 425–429. https://doi.org/10.7752/jpes.2020.s1061
Fedewa, A. L., & Ahn, S. (2011). The Effects of Physical Activity and Physical Fitness on Children’s Achievement and Cognitive Outcomes: A Meta-Analysis. Research Quarterly for Exercise and Sport, 82(3), 521–535. https://doi.org/10.1080/02701367.2011.10599785
Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The Cultural Number Line: A Review of Cultural and Linguistic Influences on the Development of Number Processing. Journal of Cross-Cultural Psychology, 42(4), 543–565. https://doi.org/10.1177/0022022111406251
Griffo, J. M., Kulinna, P., Hicks, L., & Pangrazi, C. (2018). Becoming One in the Fitness Segment: Physical Education and Mathematics. The Physical Educator, 75(4), 647–660. https://doi.org/10.18666/TPE-2018-V75-I4-8199
Howie, E. K., Schatz, J., & Pate, R. R. (2015). Acute Effects of Classroom Exercise Breaks on Executive Function and Math Performance: A Dose–Response Study. Research Quarterly for Exercise and Sport, 86(3), 217–224. https://doi.org/10.1080/02701367.2015.1039892
Indagine nazionale 2019: I dati nazionali. (2020). ISS - Istituto Superiore di Sanità. https://www.epicentro.iss.it/okkioallasalute/indagine-2019-dati
Krzywacki, H., Pehkonen, L., & Laine, A. (2016). Promoting Mathematical Thinking in Finnish Mathematics Education. In H. Niemi, A. Toom, & A. Kallioniemi (Eds.), Miracle of Education (pp. 109–123). SensePublishers. https://doi.org/10.1007/978-94-6300-776-4_8
McMORRIS, T., Myers, S., MacGILLIVARY, W. W., Sexsmith, J. R., Fallowfield, J., Graydon, J., & Forster, D. (1999). Exercise, plasma catecholamine concentrations and decision-making performance of soccer players on a soccer-specific test. Journal of Sports Sciences, 17(8), 667–676. https://doi.org/10.1080/026404199365687
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., Ross, S., Sears, M. R., Thomson, W. M., & Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693–2698. https://doi.org/10.1073/pnas.1010076108
Mooses, K., Mägi, K., Riso, E.-M., Kalma, M., Kaasik, P., & Kull, M. (2017). Objectively measured sedentary behaviour and moderate and vigorous physical activity in different school subjects: A cross-sectional study. BMC Public Health, 17(1), 108. https://doi.org/10.1186/s12889-017-4046-9
Mullender-Wijnsma, M. J., Hartman, E., De Greeff, J. W., Doolaard, S., Bosker, R. J., & Visscher, C. (2016). Physically Active Math and Language Lessons Improve Academic Achievement: A Cluster Randomized Controlled Trial. Pediatrics, 137(3), e20152743. https://doi.org/10.1542/peds.2015-2743
Núñez, R. (2006). Do Real Numbers Really Move? Language, Thought, and Gesture: The Embodied Cognitive Foundations of Mathematics. In R. Hersh (Ed.), 18 Unconventional Essays on the Nature of Mathematics (pp. 160–181). Springer-Verlag. https://doi.org/10.1007/0-387-29831-2_9
Otero, M. A., & Lafuente Fernández, J. C. (2022). Análisis del trabajo de contenidos matemáticos desde el área de Educación Física en Educación Primaria (Analysis of the work of mathematical contents from the area of Physical Education in Primary Education). Retos, 45, 224–232. https://doi.org/10.47197/retos.v45i0.92365
Rasberry, C. N., Lee, S. M., Robin, L., Laris, B. A., Russell, L. A., Coyle, K. K., & Nihiser, A. J. (2011). The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature. Preventive Medicine, 52 Suppl 1, S10-20. https://doi.org/10.1016/j.ypmed.2011.01.027
Reed, J. A., Einstein, G., Hahn, E., Hooker, S. P., Gross, V. P., & Kravitz, J. (2010). Examining the Impact of Integrating Physical Activity on Fluid Intelligence and Academic Performance in an Elementary School Setting: A Preliminary Investigation. Journal of Physical Activity and Health, 7(3), 343–351. https://doi.org/10.1123/jpah.7.3.343
Sahlberg, P. (2011). Paradoxes of educational improvement: The Finnish experience. Scottish Educational Review, 43(1), 3–23. https://doi.org/10.1163/27730840-04301002
Sallis, J. F., McKenzie, T. L., Kolody, B., Lewis, M., Marshall, S., & Rosengard, P. (1999). Effects of Health-Related Physical Education on Academic Achievement: Project SPARK. Research Quarterly for Exercise and Sport, 70(2), 127–134. https://doi.org/10.1080/02701367.1999.10608030
Schleicher, A. (2019). PISA 2018: Insights and Interpretations . OECD. https://www.oecd.org/pisa/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf
Shephard, R. J. (1997). Curricular Physical Activity and Academic Performance. Pediatric Exercise Science, 9(2), 113–126. https://doi.org/10.1123/pes.9.2.113
Shephard, R. J., Lavallée, H., Voile, M., LaBarre, R., & Beaucage, C. (1994). Academic Skills and Required Physical Education: The Trios Rivieres Experience. CAHPER Research Supplement, 1, 1–12.
Sibley, B. A., & Etnier, J. L. (2003). The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis. Pediatric Exercise Science, 15(3), 243–256. https://doi.org/10.1123/pes.15.3.243
Sneck, S., Viholainen, H., Syväoja, H., Kankaapää, A., Hakonen, H., Poikkeus, A.-M., & Tammelin, T. (2019). Effects of school-based physical activity on mathematics performance in children: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 109. https://doi.org/10.1186/s12966-019-0866-6
Snyder, K., Dinkel, D. M., Schaffer, C., Hively, S., & Colpitts, A. (2017). Purposeful Movement: The Integration of Physical Activity into a Mathematics Unit. International Journal of Research in Education and Science, 3(1), 75–87. https://digitalcommons.unomaha.edu/hperfacpub/20/
Vetter, M., O’Connor, H., O’Dwyer, N., & Orr, R. (2018). Learning “Math on the Move”: Effectiveness of a Combined Numeracy and Physical Activity Program for Primary School Children. Journal of Physical Activity and Health, 15(7), 492–498. https://doi.org/10.1123/jpah.2017-0234
WHO - World Health Organization. (2019). Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. World Health Organization. https://iris.who.int/handle/10665/311664
WHO - World Health Organization. (2020). WHO guidelines on physical activity and sedentary behaviour. World Health Organization. https://www.who.int/publications/i/item/9789240015128
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. https://doi.org/10.3758/bf03196322
Downloads
Published
How to Cite
License
Copyright (c) 2024 Manuela Valentini, Irene Sbarbati
This work is licensed under a Creative Commons Attribution 4.0 International License.
Formazione & insegnamento is distributed under Attribution 4.0 International (CC BY 4.0).
For further details, please refer to our Repository & Archiving Policy, as well as our Copyright & Licensing Terms.