Du tableau noir aux écrans numériques : Comment la technologie en classe influence le comportement académique, l’engagement et la motivation des élèves

Auteurs-es

  • Sher Alam Khan PhD Scholar in Learning Science and Digital Technologies; Department of Humanities, University of Ferrara & University of Modena Reggio Emilia (Italy); sher.khan@unimore.it https://orcid.org/0009-0002-7184-1635
  • Giorgio Poletti Department of Humanities, University of Ferrara, (Italy); giorgio.poletti@unife.it https://orcid.org/0000-0002-7270-6083
  • Farooq Nawaz Khan Center for Education & Staff Training, University of Swat (Pakistan); farooq@uswat.edu.pk

DOI :

https://doi.org/10.7346/-fei-XXIII-02-25_12

Mots-clés :

Transformation numérique, Technologie éducative, Comportement académique des élèves, Engagement, Motivation

Résumé

A l'ère numérique, les salles de classe intègrent des technologies pour soutenir l'étude, la collaboration, l'organisation, l'engagement et la motivation. Cette étude quantitative et descriptive a examiné le lien entre la technologie en classe et le comportement académique d'élèves de 10e année dans un lycée public de Khyber Pakhtunkhwa, Pakistan. Les données ont été recueillies au moyen d'un questionnaire Likert à cinq points élaboré par les auteurs, puis analysées avec SPSS (moyennes, écarts-types, tests du khi-deux et matrices de corrélation). Les participants ont indiqué que les outils numériques — y compris les tableaux blancs interactifs et les plateformes en ligne — soutiennent l'apprentissage personnalisé, la collaboration en temps réel avec les enseignants et les pairs, ainsi que l'organisation efficace des supports et des délais. Les répondants ont également fait état d'une participation, d'une motivation et d'un engagement accrus. Globalement, les résultats suggèrent que des parcours d'apprentissage personnalisés rendus possibles par la technologie, des outils de collaboration et des plateformes interactives sont associés à une amélioration des compétences d'étude et d'organisation, ainsi qu'à des comportements académiques plus engagés.

Références

Carr, C. T. (2020). CMC Is Dead, Long Live CMC!: Situating Computer-Mediated Communication Scholarship Beyond the Digital Age. Journal of Computer-Mediated Communication, 25(1), 9–22. https://doi.org/10.1093/jcmc/zmz018

Dabbagh, N., & Kitsantas, A. (2012). Personal learning environments, social media, and self-regulated learning: A natural formula for connecting formal and informal learning. The Internet and Higher Education, 15(1), 3–8. https://doi.org/10.1016/j.iheduc.2011.06.002

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The Impact of Digital Technology on Learning: A Summary for the Education Endowment Foundation: Full Report. Durham University and Education Endowment Foundation. Retrieved September 4, 2025, from https://eric.ed.gov/?id=ED612174

Johnson, M. (2020). Cloud computing and student productivity: A modern approach to learning organization. Journal of Educational Technology, 18(3), 45–60. https://doi.org/10.59890/ijasr.v2i2.1333

Jonassen, D. H. (1999). Designing constructivist learning environments. In C. M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional theory (Vol. 2, pp. 215–239). Lawrence Erlbaum Associates.

Kay, R. H., Knaack, L. & Petrarca, D. (2018). Exploring student perceptions of web-based learning tools. The Internet and Higher Education, 20, 1–7.

Khan, S. H., ur Rahim, Mujeeb & Naz, F. L.. (2023). Effects of Digital Technology on Mathematical Achievements of Primary School Students; Evidences From Khyber Pakhtunkhwa Pakistan. International Journal of Contemporary Issues in Social Sciences, 2(3), 287–293. Retrieved September 4, 2025, from https://ijciss.org/index.php/ijciss/article/view/62

Li, Y., & Tsai, C. C. (2013). How students’ attitudes toward internet-mediated learning resources influence their learning behaviors. Computers & Education, 68, 326–334. https://doi.org/10.1016/j.compedu.2013.05.005

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2018). Artificial intelligence and the future of learning. The Royal Society.

Matthews, R., & Ross, E. (2010). Research methods: A practical guide for the social sciences. Pearson Education Ltd.

Mayer, R. E. (2009). Multimedia learning. Cambridge University Press.

Miller, A. (2019). The impact of digital note-taking on student learning and organization. Educational Psychology Review, 31(2), 175–192. https://doi.org/10.1007/s10648-019-09472-3

Piaget, J. (1970). Science of education and the psychology of the child. Oxford University Press.

Schunk, D. H., & Greene, J. A. (2018). Handbook of self-regulation of learning and performance. Routledge.

Selwyn, N. (2020). Taking a qualitative approach to technology and education. In N. Selwyn (Ed.), Telling Tales on Technology (pp. 7–20). Routledge.

Selwyn, N. (2016). Education and technology: Key issues and debates. Bloomsbury Publishing.

Selwyn, N., Hillman, T., Bergviken Rensfeldt, A., & Perrotta, C. (2023). Digital technologies and the automation of education—Key questions and concerns. Postdigital Science and Education, 5(1), 15–24. https://doi.org/10.1007/s42438-021-00252-5

Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252–275. https://doi.org/10.1016/j.compedu.2015.11.008

Van Dijk, J. A. G. M. (2020). The digital divide. Polity Press.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Wang, Y. (2021). Collaborative learning in digital education: Tools and strategies. Springer.

Warschauer, M. (2020). Learning in the cloud: How (and why) to transform schools with digital media. Teachers College Press.

Yue, C., & Xu, X. (2019). Review of quantitative methods used in Chinese educational research, 1978–2018. ECNU Review of Education, 2(4), 515–543. https://doi.org/10.1177/2096531119878966

Zhao, Y., & Frank, K. A. (2003). Factors affecting technology uses in schools: An ecological perspective. American Educational Research Journal, 40(4), 807–840. https://doi.org/10.3102/00028312040004807

Zheng, B., Warschauer, M., Lin, C. H., & Chang, C. (2016). Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research, 86(4), 1052–1084. https://doi.org/10.3102/0034654316628645

Publié-e

2025-09-10

Comment citer

Khan, S. A., Poletti, G., & Khan, F. N. (2025). Du tableau noir aux écrans numériques : Comment la technologie en classe influence le comportement académique, l’engagement et la motivation des élèves. Formazione & Insegnamento, 23(2), 104–114. https://doi.org/10.7346/-fei-XXIII-02-25_12