Know Teaching through the Brain: A perspective between neuroscience and teaching
DOI:
https://doi.org/10.7346/-fei-XVIII-02-20_06Keywords:
Teaching Brain, Educational Neuroscience, NeuroeducationAbstract
Despite the multiplicity of research on the neuro-scientific contribution to education, studies that have dealt with understanding the teaching process and the teacher from the perspective of the teaching brain are still rare. The teaching brain is a concept that reflects the complex, dynamic and context-dependent nature of the learning brain. The complexity of human teaching is similar to brain processing in the nervous system. Studies that focus on the teacher’s brain highlight how information centered on the teacher-student relationship can be processed, forming a dynamic theory of cognition capable of influencing awareness processes. Teachers can then use this model to guide thoughts and actions. The underlying assumption is that by studying the teacher’s brain, teachers can be helped to work in class with students. Starting from an international literature review on research related to the teaching brain, we focus on the functions of the teacher’s brain and the implications it can have in the teaching-learning relationship and teaching practices. It is a reflection “space” still little explored, which can favor new instances on teaching and on education, without forgetting precautionary attitudes.
References
Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151. https://doi.org/10.1016/j.tics.2006.02.007
Battro, A. M. (2007). Homo educabilis: A neurocognitive approach. In M. Sanchez Sorondo (Ed.), What is our real knowledge of the human being? Scripta Varia 109. Proceedings of the Working group 4–6 May 2006 (pp. xx-xx). Vatican City: Pontifical Academy of Sciences.
Battro, A. M. (2010). The teaching brain. Mind, Brain, and Education, 4(1), 28-33.
Battro, A. M., Calero, C. I., Goldin, A. P., Holper, L., Pezzatti, L., Shalom, D. E., & Sigman, M. (2013). The cognitive neuroscience of the teacher-student interaction. Mind, Brain, and Education, 7(3), 177-181.
Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123, 600-612. https://doi.org/10.1037/rev0000025
Brockington, G., Balardin, J. B., Zimeo Morais, G. A., Malheiros, A., Lent, R., Moura, L. M., & Sato, J. R. (2018). From the laboratory to the classroom: The potential of functional near-infrared spectroscopy in educational neuroscience. Frontiers in Psychology, 9, 1840. https://doi.org/10.3389/fpsyg.2018.01840
Caine, G., & Caine, R. N. (2006). Meaningful learning and the executive functions of the brain. New Directions for Adult and Continuing Education, 110, 53-61.
D’Alessio, C. (2015). The dialogue between pedagogy and neuroscience as a new frontier in education. Formazione e Insegnamento, European Journal of Research on Education and Teaching, 13(2), 291-296. https://doi.org/10.7346/fei-XIII-02-15_29
Damasio, A. (2016). Afterword. In M.E. Immordino-Yang (Ed.), Emotion, Learning and the Brain: Exploring the Educational Implications of Affective Neuroscience (pp. xx-xx). New York: W.W. Norton & Company.
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J., Ding, M., & Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27, 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002
Editorial. (2005). Bringing neuroscience to the classroom. Nature, 435, 1138. https://doi.org/10.1038/4351138a
Frauenfelder, E., & Santoianni, F. (Eds.). (2003). Mind, Learning and Knowledge in Educational Contexts. Cambridge: Cambridge Scholars Press.
Fisher, K.W., & Rose, S.P. (1998). Growth cycle of brain and mind. Educational Leadership, 56(3), 56-60.
Fischer, K.W. (2009). Mind, brain, and education: Building a scientific groundwork for learning and teaching. Mind, Brain and Education, 1(1), 3-16.
Fischer, K.W., & Daniel, D.B. (2009). Need for infrastructure to connect research with practice in education. Mind, Brain and Education, 3(1), 1-2.
Geake, J.G. (2009). The brain at school: Educational neuroscience in the classroom. London: Open University Press.
Goldin, A., Pezzatti, L., Battro, A., & Sigman, M. (2011). From ancient Greece to modern education: Universality and lack of generalization of the Socratic dialogue. Mind, Brain, and Education, 5, 180–185.
Goswami, U. (2004). Neuroscience and education. British Journal of Educational Psychology, 74, 1-14.
Hari, R., & Kujala, M.V. (2009). Brain basis of human social interaction: From concepts to brain imaging. Physiological Reviews, 89, 453–479. https://doi.org/10.1152/physrev.00041.2007
Iran-Nejad, A., Hidi, S., & Wittrock, M.C. (1992). Reconceptualizing relevance in education from a biological perspective. Educational Psychologist, 27(3), 407-414.
Immordino-Yang, M.E. (2013). Emotions, social relationships, and the brain: Implications for the classroom. ASCD Express, 3(20). https://www.ascd.org/ascd_express/vol8/320_immordino-yang.aspx
Holper, L., Goldin, A.P., Shalom, D.E., Battro, A.M., Wolf, M., & Sigman, M. (2013). The teaching and the learning brain: A cortical hemodynamic marker of teacher–student interactions in the Socratic dialogue. International Journal of Educational Research, 59, 1-10. https://doi.org/10.1016/j.ijer.2013.02.002
Howard-Jonas, P. (2014). Neuroscience and education: Myths and messages. Nature Reviews Neuroscience, 15, 817-824. https://doi.org/10.1038/nrn3817
Jensen, E. (2005). Teaching with the brain in mind (2nd ed.). New York: ASCD Press.
Liu, J., Zhang, R, Geng, B., Zhang, T., Yuan, D., Satoru, O., & Lia, X. (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage, 193, 93-102.
Machi, L.A., & McEvoy, B.T. (2016). The literature review: Six steps to success. Thousand Oaks, CA: Corwin Press.
Meirieu, P. (2018). La Riposte. Les Miroirs Aux Alouettes. Paris: Autrement.
Olivieri, D. (2014). Le radici neurocognitive dell’apprendimento scolastico: Le materie scolastiche nell’ottica delle neuroscienze. Milano: Franco Angeli.
Olivieri, D. (2016). Mente-corpo, cervello, educazione: L’educazione fisica nell’ottica delle neuroscienze. Formazione & Insegnamento, XIV(1), 89-106.
Rivoltella, P.C. (2012). Neurodidattica. Insegnare al cervello che apprende. Milano: Raffaello Cortina.
Rodriguez, V. (2013). The human nervous system: A framework for teaching and the teaching brain. Mind, Brain, and Education, 7(1), 2-12.
Rodriguez, V., & Solis, S. L. (2013). Teachers’ awareness of the learner-teacher interaction: Preliminary communication of a study investigating the teaching brain. Mind, Brain, and Education, 7(3), 161-169.
Rodriguez, V., & Fitzpatrick, M. (2014). The Teaching Brain: An Evolutionary Trait at the Heart of Education. New York, London: The New Press.
Rodriguez, V., & Mascio, B. (2018). What is the skill of teaching? A new framework of teachers’ social emotional cognition. In A. Lopez, & E. Olan (Eds.), Transformative pedagogies for teacher education: Moving towards critical praxis in an era of change. Greenwich, CT: Information Age Publishing.
Santoianni, F. (2019). Brain education cognition. RTH - Research Trends in Humanities. Education & Philosophy, 6, 44-52.
Strauss, S. (2005). Teaching as a natural cognitive ability: Implications for classroom practice and teacher education. In D. Pillemer, & S. White (Eds.), Developmental psychology and social change. Cambridge, UK: Cambridge University Press.
Strauss, S., & Ziv, M. (2012). Teaching is a natural cognitive ability for humans. Mind, Brain, and Education, 6, 186–196. https://doi.org/10.1111/j.1751-228X.2012.01156.x
Schwartz, M. (2015). Mind, brain and education: A decade of evolution. Mind, Brain, and Education, 9(2), 64-71.
Sousa, D. (2011). Commentary mind, brain, and education: The impact of educational neuroscience on the science of teaching. Learning Landscapes, 5(1), 37-43.
Summak, S.M., Summak, A.E.G., & Summak, P.S. (2010). Building the connection between mind, brain and educational practice; roadblocks and some prospects. Procedia Social and Behavioral Sciences, 2, 1644–1647.
Takeuchi, N., Mori, T., Suzukamo, Y., & Izumi, S.I. (2016). Integration of teaching processes and learning assessment in the prefrontal cortex during a video game teaching-learning task. Front. Psychol., 7, 2052. https://doi.org/10.3389/fpsyg.2016.02052
Tibke, J. (2019). Why the Brain Matters: A teacher investigates neuroscience. London: Sage.
Tino, C., Fedeli, M., & Mapelli, D. (2019). Neurodidattica: uno spazio dialogico tra saperi per innovare i processi di insegnamento e apprendimento. RTH - Research Trends in Humanities. Education & Philosophy, 6, 34-43.
Willingham, T.D., & Lloyd, W.J. (2007). How educational theories can use neuroscientific data. Mind, Brain, and Education, 3(1), 140-149.
Willingham, T.D. (2017). A mental model of the learner: Teaching the basic science of education psychology to future teachers. Mind, Brain, Education, 11(4), 166-175.
Zheng, L., Chen, C., Liu, W., Long, Y., Zhao, H., Bai, X., et al. (2018). Enhancement of teaching outcome through neural prediction of the students' knowledge state. Hum Brain Mapp., 39, 3046–3057. https://doi.org/10.1002/hbm.24059
Zull, J. E. (2006). Key aspects of how the brain learns. New directions for adult and continuing education, 110, 3-9.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Pensa MultiMedia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Formazione & insegnamento is distributed under Attribution 4.0 International (CC BY 4.0).
For further details, please refer to our Repository & Archiving Policy, as well as our Copyright & Licensing Terms.