Integrando ChatGPT como ferramenta de aprendizado: benefícios potenciais e considerações críticas
DOI:
https://doi.org/10.7346/-fei-XXII-02-24_09Palavras-chave:
Educação midiática, Inteligência Artificial, Aprendizado envolvente, Tecnologias digitais, ChatGPTResumo
Este artigo examina a integração potencial do ChatGPT da OpenAI em ambientes educacionais, com foco particular em sua capacidade de aumentar o engajamento dos alunos em contextos de aprendizado. Para investigar o potencial do ChatGPT em entregar conteúdo educacional personalizado para grupos de aprendizagem diversos, entrevistas estruturadas foram conduzidas entre diferentes tipos de alunos e o chatbot. Estas entrevistas foram desenhadas para simular interações educacionais reais básicas hipotéticas. Embora os resultados indiquem que o ChatGPT é capaz de se adaptar a uma variedade de necessidades e estilos educacionais, facilitando experiências de aprendizado mais acessíveis e envolventes, muitas limitações, como a falta de inteligência emocional e o potencial de reduzir o pensamento crítico, foram identificadas — destacando a necessidade de uma integração cuidadosa e monitoramento contínuo das tecnologias de IA em ambientes educacionais. O pesquisador propõe uma abordagem equilibrada para a integração da IA, enfatizando o potencial de sinergia entre ferramentas de IA e métodos de aprendizado tradicionais.
Referências
Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 5185–5198). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.463
Bommasani, R., Hudson, D. A., Adeli, E., et al. (2021). On the opportunities and risks of foundation models. arXiv. https://doi.org/10.48550/arXiv.2108.07258
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school (Expanded ed.). National Academy Press.
Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. arXiv. https://doi.org/10.48550/arXiv.2005.14165
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 77–91). https://doi.org/10.1145/3287560.3287596
Chan, C. K. Y., & Tsi, L. H. (2023). The AI revolution in education: Will AI replace or assist teachers in higher education? arXiv. https://doi.org/10.48550/arXiv.2305.01185
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.
Denzin, N. K., & Lincoln, Y. S. (Eds.). (2018). The SAGE handbook of qualitative research (5th ed.). SAGE Publications.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv. https://doi.org/10.48550/arXiv.1810.04805
Edwards, L., & Veale, M. (2017). Slave to the algorithm? Why a ‘right to an explanation’ is probably not the remedy you are looking for. Duke Law & Technology Review, 16(1), 18–84. https://doi.org/10.2139/ssrn.2972855
Floridi, L. (2023). The ethics of artificial intelligence. Oxford University Press.
Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681–694. https://doi.org/10.1007/s11023-020-09548-1
Fuchs, T. (2018). Ecology of the brain: The phenomenology and biology of the embodied mind. Oxford University Press.
Gligorea, I., Marius, C., Romana, O., Andra-Teodora, G., Hortensia, G., & Paul, R. (2023). Adaptive learning using artificial intelligence in e-learning: A literature review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216
Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692
Goleman, D. (2005). Emotional intelligence: Why it can matter more than IQ. Random House.
Haider, J., & Sundin, O. (2019). Invisible search and online search engines: The ubiquity of search in everyday life (1st ed.). Routledge. https://doi.org/10.4324/9780429448546
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology: An introduction to phenomenological philosophy. Northwestern University Press.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, J. (2020). Mental health effects of school closures during COVID-19. The Lancet Child & Adolescent Health, 4(6), 421. https://doi.org/10.1016/S2352-4642(20)30109-7
Luckin, R. (2017). Machine learning and human intelligence: The future of education for the 21st century. UCL IOE Press.
Martin, A. (2018). Digital literacy and the “digital society.” In Digital literacies: Concepts, policies and practices (pp. 151-176). Routledge.
Merleau-Ponty, M. (1962). Phenomenology of perception. Routledge.
Montenegro-Rueda, M., Fernández-Cerero, J., Fernández-Batanero, J. M., & López-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. Computers, 12(8), 153. https://doi.org/10.3390/computers12080153
Nissenbaum, H. (2011). Privacy in context: Technology, policy, and the integrity of social life. Stanford University Press.
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press.
Peters, M. E., Neumann, M., Iyyer, M., et al. (2018). Deep contextualized word representations. arXiv. https://doi.org/10.48550/arXiv.1802.05365
Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. British Journal of Educational Technology, 50(6), 1373–1384. https://doi.org/10.1111/bjet.12831
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424. https://doi.org/10.1017/S0140525X00005756
Suchman, L. A. (2007). Human-machine reconfigurations: Plans and situated actions. Cambridge University Press.
Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. Basic Books.
van Manen, M. (2023). Phenomenology of practice: Meaning-giving methods in phenomenological research and writing (2nd ed.). Routledge. https://doi.org/10.4324/9781003228073
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. https://doi.org/10.48550/arXiv.1706.03762
Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR): A practical guide (1st ed.). Springer. https://doi.org/10.1007/978-3-319-57959-7
Wolf, T., Debut, L., Sanh, V., et al. (2020). Transformers: State-of-the-art natural language processing. arXiv. https://doi.org/10.48550/arXiv.1910.03771
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
Ziegler, D. M., Stiennon, N., Wu, J., et al. (2019). Fine-tuning language models from human preferences. arXiv. https://doi.org/10.48550/arXiv.1909.08593
Downloads
Publicado
Como Citar
Edição
Seção
Categorias
Licença
Copyright (c) 2024 Danilo Petrassi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Formazione & insegnamento é distribuído sob a Attribution 4.0 International (CC BY 4.0).
Para obter mais detalhes, consulte nossa Política de Repositório e Arquivamento, bem como nossos Termos de Direitos Autorais e Licenciamento.