Beyond formative assessment: Construction and validation of the Teachers’ Assessment Strategies Scale (StraVI)
DOI:
https://doi.org/10.7346/-fei-XXII-01-24_11Keywords:
assessment for learning, assessment as learning, sustainable assessment, assessment strategies, validationAbstract
The study presents the process of construction and validation of the Teachers’ Assessment Strategies Scale (StraVI), designed to identify the formative assessment strategies employed by primary and secondary school teachers for in-class assessment. The validation sample consists of 1,545 serving teachers, distributed nationwide. The StraVI scale, subjected to both exploratory and confirmatory factor analyses, demonstrates robust psychometric properties and is delineated into the following dimensions: Assessment strategies oriented towards improving learning (S-AfL) and Assessment strategies oriented towards self-regulation and sustainability of learning (S-AaL). This instrument addresses a gap in the existing toolkit within the field, by honing in on the specifics of various formative assessment strategies, distinguishing between strategies associated with the assessment for learning approach and those linked to the assessment as learning approach, while also paying particular attention to sustainable assessment.
References
Assessment Reform Group (ARG) (2002). Assessment is for learning: 10 principles. Research-based principles to guide classroom practice. https://assessmentreformgroup.files.wordpress.com/2012/01/10principles_english.pdf
Bartlett, M. S. (1954). A note on the multiplying factors for various χ2 approximations. Journal of the Royal Statistical Society. Series B (Methodological), 296–298.
Batini, F., & Guerra, M. (2020). Gli effetti della valutazione formativa sull’apprendimento nella scuola primaria. Una revisione sistematica. Pedagogia più Didattica, 6(2), 78–93.
Ben-Eliyahu, A. (2021). Sustainable learning in education. Sustainability, 13(8), Article 4250. https://doi.org/10.3390/su13084250
Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy & Practice, 18(1), 5–25. https://doi.org/10.1080/0969594X.2010.513678
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. https://doi.org/10.1037/0033-2909.107.2.238
Boud, D. (2000). Sustainable assessment: rethinking assessment for the learning society. Studies in Continuing Education, 22(2), 151–167. https://doi.org/10.1080/713695728
Boud, D. (2022). Assessment-as-learning for the development of students’ evaluative judge- ment. In Z. Yan, & L. Yang (Eds.), Assessment as learning: Maximising opportunities for student learning and achievement (pp. 25–37). Routledge. [Versione Kindle MAC].
Boud, D., & Soler, R. (2016). Sustainable assessment revisited. Assessment & Evaluation in Higher Education, 41(3), 400–413. https://doi.org/10.1080/02602938.2015.1018133
Cheung, G. W., & Resnvold, R. B. (2002). Evaluating Goodness of fit indexes for testing measurement invariance. Structural Equation Modelling: A Multidisciplinary Journal, 9, 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Clark, I. (2012). Formative assessment: Assessment is for self-regulated learning. Educational Psychology Review, 24(2), 205–249. https://doi.org/10.1007/s10648-011-9191-6
Corsini, C. (2023). La valutazione che educa. Liberare insegnamento e apprendimento dalla tirannia del voto. FrancoAngeli.
Crooks, T. (2011). Assessment for learning in the accountability era: New Zealand. Studies in Educational Evaluation, 37(1), 71–77. https://doi.org/10.1016/j.stueduc.2011.03.002
Earl, L. M. (2013). Assessment as Learning: Using classroom assessment to maximize student learning (2nd ed.). Corwin.
Fleiss, J. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378–382. https://doi.org/10.1037/h0031619
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research (JMR), 18(1), 39–50. http://www.jstor.org/stable/3151312
Galliani, L. (2009). Web ontology della valutazione educativa. Pensa MultiMedia.
Graham, L., Berman, J., & Bellert, A. (2015). Sustainable learning. Cambridge University Press.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Person Education Limited.
Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses on achievement. Routledge.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1–55.
Kaiser, H. F. (1970). A second-generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark 4. Educational and Psychological Measurement, 34(1), 111–117. https://doi.org/10.1177/001316447403400115
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Lam, R. (2019). Teacher assessment literacy: Surveying knowledge, conceptions and practices of classroom-based writing assessment in Hong Kong. System, 81, 78–89. https://doi.org/10.1016/j.system.2019.01.006
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–385. https://doi.org/10.1097/00006199-198611000-00017
Mardia, K. V. (1970). Measures of multivariate Skewness and Kurtosis with applications. Biometrika, 57(3), 519–530. https://doi.org/10.2307/2334770
Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568–592. https://doi.org/10.1037/0021-9010.93.3.568
Meusen-Beekman, K., Joosten-ten Brinke, D., & Boshuizen, E. (2016b). De retentie van zelfregulatie, motivatie en self-efficacy in het voortgezet onderwijs na formatieve assessments in het basisonderwijs. Pedagogische Studiën, 93(3), 136–153.
Panadero, E., Alonso-Tapia, J., & Huertas, J. A. (2012). Rubrics and self-assessment scripts effects on self-regulation, learning and self-efficacy in secondary education. Learning and Individual Differences, 22(6), 806–813. https://doi.org/10.1016/j.lindif.2012.04.007
Pavlov, G., Shi, D., & Maydeu-Olivares, a. (2020) Chi-square Difference Tests for Comparing Nested Models: An Evaluation with Non-normal Data, Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 908–917. https://doi.org/10.1080/10705511.2020.1717957
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal (AMJ), 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514. https://doi.org/10.1007/BF02296192
Schellekens, L. H., Bok, H. G., de Jong, L. H., van der Schaaf, M. F., Kremer, W. D., & van der Vleuten, C. P. (2021). A scoping review on the notions of Assessment as Learning (AaL), Assessment for Learning (AfL), and Assessment of Learning (AoL). Studies in Educational Evaluation, 71, Article 101094. https://doi.org/10.1016/j.stueduc.2021.101094
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23–74.
Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychological Bulletin, 143(6), 565–600. http://dx.doi.org/10.1037/bul0000098
Scierri, I. D. M. (2021). Strategie e strumenti di valutazione formativa per promuovere l’apprendimento autoregolato: una rassegna ragionata delle ricerche empiriche. Journal of Educational, Cultural and Psychological Studies, 24, 213–227. https://doi.org/10.7358/ecps-2021-024-scie
Scierri, I. D. M. (2022). Finalità e modi della valutazione: primi risultati di un’indagine su concezioni e strategie valutative dei docenti delle scuole italiane. In V. Boffo, & F. Togni (Eds.), Esercizi di ricerca. Dottorato e politiche della formazione (pp. 197–206). Firenze University Press.
Scierri, I. D. M. (2023). Per una valutazione centrata sull’allievo: framework teorico e primi risultati di un’indagine su concezioni e strategie valutative degli insegnanti. Lifelong Lifewide Learning, 19(42), 83–101. https://doi.org/10.19241/lll.v19i42.754
Scierri, I. D. M., Viola, M., & Capperucci, D. (2023). Gli effetti di una valutazione come apprendimento sullo sviluppo del giudizio valutativo e sull’autoefficacia degli studenti: una esperienza nella scuola primaria. QTimes – webmagazine, XV, 4, 290–305.
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. https://doi.org/10.1207/s15327906mbr2502_4
Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors, paper presented at the annual meeting of the Psychometric Society. Iowa City.
Thurstone, L. L. (1947). Multiple factor analysis. University of Chicago Press.
Tomlinson, C. A. (2007). Learning to love assessment. Educational Leadership, 65(4), 8–13.
Trinchero, R. (2017). Attivare cognitivamente con la valutazione formante. In A. M. Notti (Ed.), La funzione educativa della valutazione. Teorie e pratiche della valutazione educativa (pp. 73–90). Pensa MultiMedia.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10. https://doi.org/10.1007/BF02291170
Vertecchi, B. (2023, febbraio). Ipotesi per un esperimento. Tuttoscuola, XLVIII, 26–27.
Wiliam, D. (2018). Embedded formative assessment (2nd ed.). Solution Tree Press.
Wiliam, D., & Black, P. J. (1996). Meanings and consequences: a basis for distinguishing formative and summative functions of assessment? British Educational Research Journal, 22, 537–548.
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in Psychology, 10, Article 3087. https://doi.org/10.3389/fpsyg.2019.03087
Yan, Z., & Boud, D. (2022). Conceptualising assessment-as-learning. In Z. Yan, & L. Yang, (Eds.), Assessment as Learning. Maximising opportunities for student learning and achievement (pp. 11–24). Routledge. [Versione Kindle MAC].
Downloads
Published
Versions
- 2024-07-03 (2)
- 2024-04-30 (1)
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Irene Dora Maria Scierri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Formazione & insegnamento is distributed under Attribution 4.0 International (CC BY 4.0).
For further details, please refer to our Repository & Archiving Policy, as well as our Copyright & Licensing Terms.