Knowledge on the structure of the solar system in teacher education students: the role of national context and gender

Autori

  • Claudia Melis Department of Mathematics, Natural and Social Sciences, Queen Maud University College for Early Childhood Education, Trondheim, Norway, cme@dmmh.no
  • Gabriella Falcicchio Department of Educational Science, Psychology and Communication, University of Bari Aldo Moro, Italy https://orcid.org/0000-0003-4451-5287
  • Per-Arvid Wold Department of Nature, Environment and Health, Queen Maud University College for Early Childhood Education, Trondheim, Norway https://orcid.org/0000-0001-8529-1502
  • Anna Maria Billing Department of Nature, Environment and Health, Queen Maud University College for Early Childhood Education, Trondheim, Norway https://orcid.org/0000-0002-0743-7374

DOI:

https://doi.org/10.7346/sird-012024-p100

Parole chiave:

Educazione Astronomica, Insegnanti In Pre-Servizio, Sistema Solare, Studio Comparativo

Abstract

Per molti secoli l'umanità ha creduto che la Terra fosse il centro dell'Universo con il Sole e i pianeti in orbita attorno ad essa (modello geocentrico). La rivoluzione copernicana ha dimostrato che tutti i pianeti del sistema solare orbitano invece attorno al Sole (modello eliocentrico). Dai tempi di Copernico, le nostre conoscenze sono migliorate in modo esponenziale, anche grazie alla possibilità di osservare il sistema solare dallo spazio. Il sistema solare è un argomento essenziale nell’alfabetizzazione scientifica, necessario per capire come misuriamo il tempo e cosa rende la Terra adatta alla vita. Per questo motivo ci siamo chiesti se i nostri studenti conservassero una conoscenza astronomica di base derivante dall'istruzione precedente. Prima dell’inizio dell’insegnamento, abbiamo chiesto agli studenti dei corsi di educazione della prima infanzia in Norvegia (n = 102) e scienze dell’educazione in Italia (n = 104) di disegnare il sistema solare, partendo dalla premessa che i disegni riflettessero il loro livello di conoscenza. Sulla questa base abbiamo assegnato ad ogni studente un punteggio da zero a nove. Abbiamo quindi usato un modello statistico per spiegare la variazione del punteggio in base alla nazionalità e al genere. Il miglior modello includeva come variabili esplicative la nazionalità, il genere e la loro interazione. L’effetto di genere è risultato significativo solo per gli studenti italiani. Questi risultati potrebbero essere la conseguenza sia delle differenze nell’uguaglianza di genere che nei programmi di insegnamento tra i due paesi.

Riferimenti bibliografici

Adam, S., Reber, U., Häussler, T., & Schmid-Petri, H. (2020). How climate change skeptics (try to) spread their ideas: Using computational methods to assess the resonance among skeptics' and legacy media. PLoS One, 15(10), e0240089. https://doi.org/10.1371/journal.pone.0240089

Agan, L., & Sneider, C. (2004). Learning about the Earth’s shape and gravity: A guide for teachers and curriculum developers. Astronomy Education Review, 2(2), 90-117. https://doi.org/10.3847/AER2003017

Atta, G., Abdelsattar, A., Elfiky, D., Zahran, M., Farag, M., & Slim, S. O. (2022). Virtual Reality in Space Technology Education. Education Sciences, 12(12), 890. https://www.mdpi.com/2227-7102/12/12/890

Ausubel, D. G. (1963). Cognitive Structure and the Facilitation of Meaningful Verbal Learning1. Journal of Teacher Education, 14(2), 217-222. https://doi.org/10.1177/002248716301400220

Bailey, J. M., & Slater, T. F. (2003). A Review of Astronomy Education Research. Astronomy Education Review, 2, 20-45. https://doi.org/10.3847/aer2003015

Barab, S. A., Hay, K. E., Squire, K., Barnett, M., Schmidt, R., Karrigan, K., Yamagata-Lynch, L., & Johnson, C. (2000). Virtual Solar System Project: Learning through a Technology-Rich, Inquiry-Based, Participatory Learning Environment. Journal of Science Education and Technology, 9(1), 7-25. http://www.jstor.org/stable/40188537

Barrutia, O., & Díez, J. R. (2019). 7 to 13-year-old students’ conceptual understanding of plant nutrition: should we be concerned about elementary teachers’ instruction? Journal of Biological Education, 55, 196 - 216. https://doi.org/10.1080/00219266.2019.1679655

Barthelemy, R. S., McCormick, M., & Henderson, C. (2016). Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions. Physical Review Physics Education Research, 12(2). https://doi.org/10.1103/PhysRevPhysEducRes.12.020119

Başpınar, P. (2020). An Interdisciplinary Approach to Elementary Astronomy Teaching. Journal of Higher Education Theory and Practice, 20(15). https://doi.org/10.33423/jhetp.v20i15.3946

Bektasli, B. (2013). The Development of Astronomy Concept Test for Determining Preservice Science Teachers' Misconceptions About Astronomy. Education & Science/Egitim ve Bilim, 38(168).

Berra, M., & Cavaletto, G. M. (2020). Overcoming the STEM Gender Gap: from School to Work. Italian Journal of Sociology of Education, 12(2), 1-21. https://doi.org/10.14658/pupj-ijse-2020-2-1

Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389-391. https://doi.org/10.1126/science.aah6524

Biemmi, I. (2015). Gender in schools and culture: taking stock of education in Italy. Gender and Education, 27(7), 812-827. https://doi.org/10.1080/09540253.2015.1103841

Biggs, J., & Moore, P. (1993). The process of learning (3rd ed.). Prentice Hall.

Bozzato, P., Fabris, M. A., & Longobardi, C. (2021). Gender, stereotypes and grade level in the draw-a-scientist test in Italian schoolchildren. International Journal of Science Education, 43(16), 2640-2662. https://doi.org/10.1080/09500693.2021.1982062

Callanan, M. A., Shirefley, T. A., Castañeda, C. L., & Jipson, J. L. (2019). Young Children's Ideas About Astronomy. Journal of Astronomy and Earth Sciences Education, 6(2), 45-58. https://doi.org/10.19030/jaese.v6i2.10339

Carli, L. L., Alawa, L., Lee, Y., Zhao, B., & Kim, E. (2016). Stereotypes About Gender and Science:Women ≠ Scientists. Psychology of Women Quarterly, 40(2), 244-260. https://doi.org/10.1177/0361684315622645

Celikler, D., & Aksan, Z. (2014). Determination of Knowledge and Misconceptions of Pre-service Elementary Science Teachers about the Greenhouse Effect by Drawing. Procedia - Social and Behavioral Sciences, 136, 452-456.

Chongsuvivatwong, V. (2018 ). epiDisplay: Epidemiological Data Display Package. R package version 3.5.0.1. https://CRAN.R-project.org/package=epiDisplay

Cimpian, J. R., Kim, T. H., & McDermott, Z. T. (2020). Understanding persistent gender gaps in STEM. Science, 368(6497), 1317-1319. https://doi.org/10.1126/science.aba7377

Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 554-559. https://doi.org/10.1073/pnas.1517441113

Duncan, D., & Arthurs, L. (2012). Improving Student Attitudes about Learning Science and Student Scientific Reasoning Skills. Astronomy Education Review. https://doi.org/10.3847/AER2009067

Eshach, H., & Fried, M. N. (2005). Should Science be Taught in Early Childhood? Journal of Science Education and Technology, 14(3), 315-336. https://doi.org/10.1007/s10956-005-7198-9

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3, 275-285. https://doi.org/10.1016/j.susoc.2022.05.004

Hastedt, D., Eck, M., Kim, E., & Sass, J. (2021). Female science and mathematics teachers: Better than they think? IEA Compass: Briefs in Education, 13. https://online.flippingbook.com/view/657596328/

Ivanitskaya, L., Clark, D., Montgomery, G., & Primeau, R. (2002). Interdisciplinary Learning: Process and Outcomes. Innovative Higher Education, 27(2), 95-111. https://doi.org/10.1023/A:1021105309984

Kallery, M. (2011). Astronomical Concepts and Events Awareness for Young Children. International Journal of Science Education, 33(3), 341-369. https://doi.org/10.1080/09500690903469082

Kanli, U. (2014). A Study on Identifying the Misconceptions of Pre-service and In-service Teachers about Basic Astronomy Concepts. Eurasia Journal of Mathematics Science and Technology Education, 10(5), 471-479. https://doi.org/10.12973/eurasia.2014.1120a

Kata, A. (2010). A postmodern Pandora's box: Anti-vaccination misinformation on the Internet. Vaccine, 28(7), 1709-1716. https://doi.org/10.1016/j.vaccine.2009.12.022

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z

Korur, F. (2015). Exploring Seventh-Grade Students' and Pre-Service Science Teachers' Misconceptions in Astronomical Concepts. Eurasia Journal of Mathematics Science and Technology Education, 11(5), 1041-1060. https://doi.org/10.12973/eurasia.2015.1373a

Köse, S. (2008). Diagnosing Student Misconceptions: Using Drawings as a Research Method. World Applied Sciences Journal, 3(2), 283-293. https://api.semanticscholar.org/CorpusID:62602328

Landrum, A. R., Olshansky, A., & Richards, O. (2021). Differential susceptibility to misleading flat earth arguments on youtube. Media Psychology, 24(1), 136-165. https://doi.org/10.1080/15213269.2019.1669461

Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research 1974–2008. International Journal of Science Education, 32(13), 1771-1799. https://doi.org/10.1080/09500690903214546

Melis, C., Falcicchio, G., Wold, P. A., & Billing, A. M. (2021). Species identification skills in teacher education students: the role of attitude, context and experience. International Journal of Science Education, 43(11), 1709-1725. https://doi.org/10.1080/09500693.2021.1928326

Melis, C., & Wold, P. A. (2021). Kindergarten Teacher Students’ Knowledge Regarding Crucial Environmental Challenges. Nordic Studies in Science Education, 17(3). https://doi.org/10.5617/nordina.8087

Ministero dell'Università e della Ricerca. (2010). National indications regarding the specific learning objectives concerning the activities and teachings included in the study plans for the high school courses referred to in article 10, paragraph 3, of the decree of the President of the Republic of 15 March 2010, n. 89, in relation to article 2, paragraphs 1 and 3, of the same regulation [In Italian]. https://www.gazzettaufficiale.it/gunewsletter/dettaglio.jsp?service=1&datagu=2010-12-14&task=dettaglio&numgu=291&redaz=010G0232&tmstp=1292405356450

Ministero della Pubblica Istruzione. (2007). Indications for the curriculum for preschool and for the first cycle of education [In Italian]. Retrieved 23.10.2023 from https://archivio.pubblica.istruzione.it/normativa/2007/allegati/dir_310707.pdf

Ministero della Pubblica Istruzione. (2012). Indications for the curriculum for preschool and for the first cycle of education [In Italian]. Retrieved 30.10.2023 from https://www.miur.gov.it/documents/20182/51310/DM+254_2012.pdf

National Academies of Sciences, E., & Medicine. (2016). Science literacy: Concepts, contexts, and consequences.

Nilsen, T., & Angell, C. (2014). The importance of discourse and attitude in learning astronomy. A mixed methods approach to illuminate the results of the TIMSS 2011 survey. Nordic Studies in Science Education, 10(1), 16-31. https://doi.org/10.5617/nordina.605

Norwegian Directorate for Education and Training. (2006a). Competence goals and assessment for the Science curriculum after the 1st year of upper secondary school [In Norwegian]. Retrieved 02.11.2023 from https://www.udir.no/kl06/NAT1-01/Hele/Kompetansemaal/etter-vg1

Norwegian Directorate for Education and Training. (2006b). Competence goals and assessment for the Science curriculum after the 7th year of primary school (NAT1-01) [In Norwegian]. Retrieved 25.10.2023 from https://www.udir.no/kl06/NAT1-01/Hele/Kompetansemaal/etter-7.-arstrinn#

Norwegian Directorate for Education and Training. (2020). Competence goals and assessment for the Science curriculum after the 7th year of primary school [In Norwegian]. Retrieved 25.10.2023 from https://www.udir.no/lk20/nat01-04/kompetansemaal-og-vurdering/kv79

Oren, F. S., & Ormancı, Ü. (2014). Exploring pre-service teachers' ideas about the digestive system by using the drawing method. Journal of Baltic Science Education. https://doi.org/10.33225/jbse/14.13.316

Osborne, J., & Pimentel, D. (2023). Science education in an age of misinformation. Science Education, 107(3), 553-571. https://doi.org/10.1002/sce.21790

Rajpaul, V. M., Lindstrom, C., Engel, M. C., Brendehaug, M., & Allie, S. (2018). Cross-sectional study of students' knowledge of sizes and distances of astronomical objects. Physical Review Physics Education Research, 14(2). https://doi.org/10.1103/PhysRevPhysEducRes.14.020108

Raleigh, N. C. (2017). Trump Badly Losing His Fights With Media Public Policy Puller. Retrieved 09.11.2023 from https://www.publicpolicypolling.com/wp-content/uploads/2017/09/PPP_Release_National_22417.pdf

Retrê, J., Russo, P., Lee, H., Penteado, E., Salimpour, S., Fitzgerald, M., Ramchandani, J., Pössel, M., Scorza, C., Christensen, L., Arends, E., Pompea, S., & Schrier, W. (2019). Big Ideas in Astronomy: A Proposed Definition of Astronomy Literacy. The International Astronomical Union Commission C1 Astronomy Education and Development.

Ricardo, T. (2000). University students' conceptions of basic astronomy concepts. Physics Education, 35(1), 9. https://doi.org/10.1088/0031-9120/35/1/301

Rutjens, B. T., Heine, S. J., Sutton, R. M., & van Harreveld, F. (2018). Attitudes Towards Science. In J. M. Olson (Ed.), Advances in Experimental Social Psychology (Vol. 57, pp. 125-165). https://doi.org/10.1016/bs.aesp.2017.08.001

Sachs, J. D., Lafortune, G., Fuller, G., & Drumm, E. (2023). Implementing the SDG Stimulus. Sustainable Development Report 2023. Dublin University Press. https://doi.org/10.25546/102924

Salmon, A. K., & Barrera, M. X. (2021). Intentional questioning to promote thinking and learning. Thinking Skills and Creativity, 40, 100822. https://doi.org/https://doi.org/10.1016/j.tsc.2021.100822

Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: capturing an elusive construct. Teaching and Teacher Education, 17(7), 783-805. https://doi.org/10.1016/S0742-051x(01)00036-1

Tutto Scuola. (2017). The map of the gender ratio in the classroom. [In Italian]. Retrieved 02.11.2023 from https://www.tuttoscuola.com/la-mappa-del-rapporto-genere-cattedra/

Vygotsky, L. S. (2012). Thought and language. MIT press.

Wittman, D. (2009). Shaping Attitudes Toward Science in an Introductory Astronomy Course. The Physics Teacher, 47(9), 591-594. https://doi.org/10.1119/1.3264591

World Economic Forum. (2023). The Global Gender Gap Report 2023. Retrieved 13.11.2023 from https://www.weforum.org/publications/global-gender-gap-report-2023/in-full/

Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9). https://doi.org/10.18637/jss.v016.i09

##submission.downloads##

Pubblicato

2024-06-29

Come citare

Melis, C., Falcicchio, G., Wold, P.-A., & Billing, A. M. (2024). Knowledge on the structure of the solar system in teacher education students: the role of national context and gender. GIORNALE ITALIANO DELLA RICERCA EDUCATIVA, (32), 100–110. https://doi.org/10.7346/sird-012024-p100

Fascicolo

Sezione

Ricerche

Categorie